Cloud based bearing fault diagnosis of induction motors

نویسندگان

چکیده

-- In general, induction motors predictive maintenance is well suited for small to large-scale industries minimize failure, maximize performance, and improve reliability. The vibration of an motor was investigated in this paper order gather precise details that can be used forecast bearing failure. With view, carrying fault detection scheme has been attempted. machine learning algorithms addition wavelet transform (WT) fast fourier (FFT), advanced signal processing technique, are study analyze frame vibrations during initialization. the Internet Things (IoT) at core today's accelerated technological growth. A large number items interconnected efficiently, particularly industrial-automation, resulting condition monitoring boost efficiency capture process parameters motor, proposed approach uses IoT-based platform. gathered saved cloud platform viewed via a web page.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sensorless fault diagnosis of induction motors

Early detection and diagnosis of incipient faults is desirable for online condition assessment, product quality assurance, and improved operational efficiency of induction motors. In this paper, a speed-sensorless fault diagnosis system is developed for induction motors, using recurrent dynamic neural networks and multiresolution or Fourier-based signal processing for transient or quasi-steady-...

متن کامل

A Rough Sets Based Classifier for Induction Motors Fault Diagnosis

This paper describes the ongoing research on Rough Sets based classifier applied to Induction Motors fault diagnosis through Motor Current Signature Analysis (MCSA). The results of mechanical failures detection and how a Rough Sets based classifier is used as a monitoring system using current signature analysis in predictive maintenance are also described in this paper. Key-Words: Predictive Ma...

متن کامل

A Review of Application of Signal Processing Techniques for Fault Diagnosis of Induction Motors – Part I

Abstract - Use of efficient signal processing tools (SPTs) to extract proper indices for fault detection in induction motors (IMs) is the essential part of any fault recognition procedure. The Part1 of the two parts paper focuses on Fourier-based techniques including fast Fourier transform and short time Fourier transform. In this paper, all utilized SPTs which have been employed for fault fete...

متن کامل

Application of Signal Processing Tools for Fault Diagnosis in Induction Motors-A Review-Part II

The use of efficient signal processing tools (SPTs) to extract proper indices for the fault detection in induction motors (IMs) is the essential part of any fault recognition procedure. The 2nd part of this two-part paper is, in turn, divided into two parts. Part two covers the signal processing techniques which can be applied to non-stationary conditions. In this paper, all utilized SPTs for n...

متن کامل

A Comprehensive Method for Detection of Induction Motors Bearing Faults

In this paper, some deficiencies of previously conducted studies are pointed out. These are including unreliability, dependent to motor and bearing specifications, lack of precision, drawbacks of experimental tests and etc. Here some important works will be reviewed. The proposed method which is based on wavelet decomposition and tracing the trend of statistical features variations, has over...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Bilgisayar bilimleri

سال: 2021

ISSN: ['2548-1304']

DOI: https://doi.org/10.53070/bbd.990814